Appendix G

Computing a Wage Trend Line

A wage trend line passes through an array of wage data so that the data above the line and the data below the line are in balance.

A mathematical equation for a trend line allows the trend of a series of data to be shown, and also provides a concise definition of that trend. Such an equation is used in the "least squares" method, accepted by statisticians as a sound, convenient device for obtaining an objective fit of a trend line.

In fitting a trend line to wage survey findings, the first trend lines used are straight lines fitted to the data by the "least squares" method.

Consistent with the name "least squares", the sum of the squares of the deviations of all the data, both above and below the fitted line, is less than the sum of the squares of the deviations of the data from any other straight line. Another characteristic of this is that the sum of the deviations of the data above the line exactly balances the sum of the deviations below.

In computing the trend line two methods are used:
(1) the so-called unit line approach which gives equal weight to each survey job weighted average and
(2) the so-called frequency line which weights each survey job average by the number of employees matched to the job in the survey.
The Formula for a straight line $\mathrm{Y}=\mathrm{a}+\mathrm{bx}$
$\mathrm{Y}=$ computed value of trend
$\mathrm{a}=$ the value of the line at its origin
$\mathrm{b}=$ intergrade differential
$\mathrm{x}=$ any grade level
In order to compute a unit trend line under the "least squares" formula the values of the unknown "a" and "b" are derived through use of the following equations:

$$
\mathrm{a}=\frac{\left(\sum \mathrm{x} 5\right)\left(\sum \mathrm{y}\right)-\left(\sum \mathrm{x}\right)\left(\sum \mathrm{xy}\right)}{(\mathrm{N})\left(\sum \mathrm{x} 5\right)-\left(\sum \mathrm{x}\right) 5}
$$

By substituting the appropriate column totals from columns (1) through (5) from the sample computation sheet we get the following:

$$
\begin{aligned}
& a=\frac{(1587)(208.396)-(185)(1581.005)}{(26)(1587)-(185) 5} \\
& a=\frac{330,724.45-292,485.92}{41,262-34,225} \\
& a=\frac{38,238.53}{7,037} \\
& a=5.434
\end{aligned}
$$

$$
\mathrm{b}=\frac{(\mathrm{N})\left(\sum \mathrm{xy}\right)-\left(\sum \mathrm{x}\right)\left(\sum \mathrm{y}\right)}{(\mathrm{N})\left(\sum \mathrm{x} 5\right)-\left(\sum \mathrm{x}\right) 5}
$$

(This divisor is identical to that used in the arithmetic computation shown for solving the unknown value of "a" above.)

$$
\begin{aligned}
& b=\frac{(26)(1581.005)-(185)(208.396)}{(26)(1587)-(185) 5} \\
& b=\frac{41,106.13-38,553.26}{41,262-34,225} \\
& b=\frac{2,552.87}{7,037} \\
& b=0.363
\end{aligned}
$$

To determine the wage rate for any given grade level the values for " a " and " b " are substituted in the original formula of $Y=a+b x$. Inserted in the place of x is the grade to be computed. For example:

Grade 1:

$$
\mathrm{Y}=\mathrm{a}+\mathrm{bx}=5.434+(.363)
$$

$(1)=5.797(5.80)$

Grade 5:

$$
\begin{gathered}
\mathrm{Y}=\mathrm{a}+\mathrm{bx}=5.434+(.363) \\
(5)=7.249(7.25)
\end{gathered}
$$

Grade 10:

$$
\begin{gathered}
\mathrm{Y}=\mathrm{a}+\mathrm{bx}=5.434+(.363) \\
(10)=9.064(9.06)
\end{gathered}
$$

In computing a frequency trend line under the "least squares" formula the following equations are used:

$$
\begin{aligned}
& \mathrm{a}=\frac{\left(\sum \mathrm{fx} 5\right)\left(\sum \mathrm{fy}\right)-\left(\sum \mathrm{fx}\right)\left(\sum \mathrm{fxy}\right)}{\left(\sum \mathrm{f}\right)\left(\sum \mathrm{fx} 5\right)-\left(\sum \mathrm{fx}\right) 5} \\
& \mathrm{~b}=\frac{\left(\sum \mathrm{f}\right)\left(\sum \mathrm{fxy}\right)-\left(\sum \mathrm{fx}\right)\left(\sum \mathrm{fy}\right)}{\left(\sum \mathrm{f}\right)\left(\sum \mathrm{fx} 5\right)-\left(\sum \mathrm{fx}\right) 5}
\end{aligned}
$$

The equations are solved by substituting the appropriate column totals from columns (6) through (10) as shown in the sample computation sheet. To determine the wage rate for any given level the same procedures used for the unit line are followed.

Exhibit I. Computation Sheet

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{(1)} \& \multirow[b]{2}{*}{(2)} \& \multicolumn{2}{|c|}{Unit line} \& \multicolumn{6}{|c|}{Frequency line} \\
\hline \& \& (3) \& (4) \& (5) \& (6) \& (7) \& (8) \& (9) \& (10) \\
\hline \begin{tabular}{l}
Example Survey Job \\
\(n\)
\end{tabular} \& Survey Job Grade \(x\) \& \begin{tabular}{l}
Weighted Average \\
\(y\)
\end{tabular} \& (2) \(x\) (3) \& \((2)^{2}\) (squared)
x5 \& Number Survey Job Matches \(f\) \& (6) \(x(2)\)
\(f x\) \& (6) \(x(3)\)

$f y$ \& (6) $x(4)$

$f x y$ \& (6) $x(5)$

$f x 5$

\hline A \& 1 \& 5.296 \& 5.296 \& 1 \& 1948 \& 1948 \& 10316.605 \& 10316.07 \& 1948

\hline B \& 2 \& 6.529 \& 13.058 \& 4 \& 2150 \& 4300 \& 14037.348 \& 28074.701 \& 8600

\hline C \& 2 \& 6.698 \& 13.396 \& 4 \& 3865 \& 7730 \& 25887.770 \& 51775.540 \& 15460

\hline D \& 3 \& 7.762 \& 23.286 \& 9 \& 1737 \& 5211 \& 13482.594 \& 40447.774 \& 15633

\hline E \& 4 \& 5.116 \& 20.464 \& 16 \& 2078 \& 8312 \& 10631.047 \& 42524.170 \& 33248

\hline F \& 4 \& 6.209 \& 24.836 \& 16 \& 125 \& 500 \& 776.125 \& 3104.500 \& 2000

\hline G \& 5 \& 6.801 \& 34.005 \& 25 \& 66 \& 330 \& 448.866 \& 2244.329 \& 1650

\hline H \& 5 \& 6.501 \& 32.505 \& 25 \& 2054 \& 10270 \& 13353.055 \& 66765.249 \& 51350

\hline I \& 5 \& 7.269 \& 36.345 \& 25 \& 2757 \& 13785 \& 20040.633 \& 100203.126 \& 68925

\hline J \& 5 \& 7.918 \& 39.590 \& 25 \& 439 \& 2195 \& 3476.002 \& 17380.008 \& 10975

\hline K \& 6 \& 8.004 \& 48.024 \& 36 \& 1228 \& 7368 \& 9828.910 \& 58973.456 \& 44208

\hline L \& 6 \& 7.793 \& 46.758 \& 36 \& 363 \& 2178 \& 2828.859 \& 16973.152 \& 13068

\hline M \& 7 \& 9.233 \& 64.631 \& 49 \& 1884 \& 13188 \& 17394.969 \& 121764.798 \& 92316

\hline N \& 8 \& 8.279 \& 66.232 \& 64 \& 5327 \& 42616 \& 44102.234 \& 352817.835 \& 340928

\hline O \& 9 \& 8.203 \& 73.827 \& 81 \& 3821 \& 34389 \& 31343.660 \& 282092.951 \& 309501

\hline P \& 9 \& 8.167 \& 73.503 \& 81 \& 137 \& 1233 \& 1118.879 \& 10069.910 \& 11097

\hline Q \& 10 \& 9.631 \& 96.310 \& 100 \& 1227 \& 12270 \& 11817.234 \& 118172.348 \& 122700

\hline R \& 10 \& 9.212 \& 92.120 \& 100 \& 846 \& 8460 \& 7793.352 \& 77933.516 \& 84600

\hline S \& 10 \& 9.080 \& 90.800 \& 100 \& 224 \& 2240 \& 2033.920 \& 20339.197 \& 22400

\hline T \& 10 \& 8.080 \& 80.800 \& 100 \& 1274 \& 12740 \& 10293.918 \& 102939.184 \& 127400

\hline U \& 10 \& 8.551 \& 85.510 \& 100 \& 529 \& 5290 \& 4523.477 \& 45234.787 \& 52900

\hline V \& 10 \& 8.771 \& 87.710 \& 100 \& 1536 \& 15360 \& 13472.254 \& 134722.547 \& 153600

\hline W \& 10 \& 10.448 \& 104.480 \& 100 \& 205 \& 2050 \& 2141.840 \& 21418.399 \& 20500

\hline X \& 10 \& 9.638 \& 96.380 \& 100 \& 2586 \& 25860 \& 24923.863 \& 249238.653 \& 258600

\hline Y \& 11 \& 9.276 \& 102.036 \& 121 \& 222 \& 2442 \& 2059.272 \& 22651.991 \& 26862

\hline Z \& 13 \& 9.931 \& 129.103 \& 169 \& 1330 \& 17290 \& 13208.227 \& 171706.986 \& 224770

\hline $N=26$ \& $\sum \mathrm{x}=185$ \& $\sum y=280.396$ \& \[
$$
\begin{aligned}
& \sum x y= \\
& 1581.005
\end{aligned}
$$

\] \& $\sum \times 5=1587$ \& $\sum \mathrm{f}=39958$ \& $\sum \mathrm{fx}=259555$ \& \[

$$
\begin{aligned}
& \sum \mathrm{fy}= \\
& 311334.911
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \sum \mathrm{fxy}= \\
& 2169885.715
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \sum f \times 5= \\
& 2115239
\end{aligned}
$$
\]

\hline
\end{tabular}

$N=$ total number of survey jobs
X = grade
$y=$ weighted average
$\mathrm{f}=$ number of survey job matches
$\sum=$ summation

